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1. Introduction

When LHC experiments like ATLAS [1, 2] and CMS [3] begin to look for signs of su-

persymmetry (or any other models with large numbers of new particles), one of the first

things they will want to probe is the mass scale associated with these new particles, if

there are any. Single particles produced in narrow s-channel resonances will in general be

easy to spot (one would hope) and will not be considered further here. The fun begins

when new particles are produced in pairs in non-resonant processes, in particular those in

which some particles go unobserved. Examples within the context of R-parity conserving

supersymmetry might include processes like gg → g̃g̃, gq → g̃q̃, qq̄ → χ0
2χ

0
1 or qq̄ → l̃¯̃l.

In this paper we present a new event variable, “mTGen”, which is designed to measure

the mass scale(s) associated with any new particle(s) which might be pair produced at

future colliders. On an event-by-event basis, mTGen supplies a lower bound for the mass

of either of the two particles which were pair produced and whose decay products were

observed, under the assumption that the event was indeed of that kind. The intention is
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that over many events a histogram of mTGen would reveal one or more edge structures whose

upper endpoints would correspond to the masses of the particles which were being produced

in large numbers. The mTGen variable takes as input (1) the reconstructed momenta of

the observed particles in each event, and (2) the masses of any unobserved particles which

are taken to have been produced in the decays of the primary particles. Though mTGen

can benefit from information regarding particle identification, this is not a requirement.

It is not the intention of this paper to discuss how mTGen performs when particle mo-

menta are poorly measured, nor to discuss issues of finite precision or acceptance. Demon-

stration of the performance of mTGen in environments representative of future colliders is

the subject of current ongoing work. This paper seeks primarily (1) to provide a source

of documentation for the definition of the mTGen variable, and (2) to document in the

appendix an analytic closed form approximation for mT2 which is valid for events with

very little initial state radiation and which is needed to demonstrate that mTGen can be

calculated efficiently.

2. mTGen

As far as mTGen is concerned, an event at a future collider is a set O containing nO observed

Lorentz four-momenta: O = {oµ
i : i = 1, . . . , nO}. Although quantum interference means

that terms like “initial state” and “final state” cannot really be applied to the momenta

in O in a well defined way, it is nevertheless common and expedient when analysing real

events to treat some momenta as if they were the result of the decays from the pair of

partons produced in the primary 2 → 2 process used in the matrix element, and to treat

other momenta as if they were the result of initial state radiation (ISR). We will therefore

divide the observed momenta into two non-overlapping sets F = {fµ
i : i = 1, . . . , nF }

(for momenta supposedly from the central 2 → 2 pair production process) and G = {gµ
i :

i = 1, . . . , nG} (for momenta supposedly from initial state radiation). In practice this

might be done by assigning all four-momenta whose transverse momenta are greater than

some threshold and whose rapidity is sufficiently central to F , while placing anything else

in G. The value of mTGen for each event will inevitably depend to some extent the exact

nature of the cuts used, and potential biases would have to be investigated in specific cases.

Most event variables (e.g. thrust and sphericity) have similar second order dependence on

cuts. The endpoint structures which are the eventual target of any mTGen investigation,

however, are expected to be particularly insensitive to these cuts. Individual events where

misassignments are made will either be swept below the endpoint by the minimisation

procedure (when momenta are omitted from F ), or will be smeared above the endpoint

(when ISR with unusually large transverse momentum is added to F in error).

In a real event, we do not know from which “side”1 of the event any particular observed

particle has come. If we did know from which side each particle had come, we could use

1We will use the term “side” to refer to the division of the particles in F into two groups, depending

on which of the two outgoing primary particles they descend from. An event, then, is an object with two

sides, and possibly also some initial state radiation. The term “side” is not meant to suggest that the

momenta of a particular side are in some way spatially correlated (e.g. in one hemisphere). Indeed, if the

two primary partons were scalars produced at threshold, then the decay products of each “side” would be
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mT2 [4, 5] to place a lower bound on the mass of the two hypothesised outgoing primary

particles. For a given event, even though we do not know the “correct” side assignments,

there is nothing to prevent us trying all possible side assignments, evaluating mT2 for each

of them, and then reporting the lowest value of mT2 so obtained. This is in fact how mTGen

is defined.

2.1 Definition of mTGen

mTGen is defined to be the smallest value of mT2 [4, 5] obtained over all possible partitions

of momenta in F into two subsets α and β – each subset representing the decay products

of a particular “side” of the event. Recall that mT2 is itself defined in terms of pα
T and

mα (respectively the transverse momentum and invariant mass of one side of the event),

pβ
T and mβ (respectively the transverse momentum and invariant mass of the other side

of the event), and χ (the mass of each of the unobserved particles which are supposed to

have been produced on each side of the event) as follows:

m2
T2 (pα

T ,pβ
T , /pT ,mα,mβ , χ) ≡

≡ min
/q(1)

T +/q(2)
T =/p

T

[

max
{

m2
T

(

pα
T , /q

(1)
T ;mα, χ

)

, m2
T

(

pβ
T , /q

(2)
T ;mβ , χ

)}]

(2.1)

where

m2
T

(

pα
T ,p

χ0
1

T ;mα, χ
)

≡ m2
α + χ2 + 2

(

Eα
T E

χ0
1

T − pα
T · pχ0

1
T

)

(2.2)

in which

Eα
T =

√

(

pα
T

)

2 + m2
α and E

χ0
1

T =

√

(

p
χ0

1
T

)

2 + χ2 (2.3)

and likewise for α ←→ β. With the above definition (in the case χ = mχ0
1
), mT2 generates

an event-by-event lower bound on the mass of the particle whose decay products made

up either of the two sides of the event, under the assumption that the event represents

pair production followed by decay to the visible particles and an unseen massive particle

on each side. When evaluated at values of χ 6= mχ0
1

the above properties are retained

approximately (see [4, 5]). There exist events which allow this lower bound to saturate,

and so (in the absence of background) the upper endpoint of the mT2 distribution may be

used to determine the mass of the particle being pair produced.

We caution the reader to avoid the trap of mistakenly concluding that mTGen, as

defined above, is a function of purely transverse (and not also longitudinal) momenta

of the visible particles in F . On the contrary, the definition above makes use of the z-

momentum of every visible particle. Although this z-momentum plays no part in forming

the transverse momentum, pα
T or pβ

T , of either side in any partition, it nonetheless can play

a significant role in forming each side’s invariant mass: mα or mβ. (This caution is not

unique to mTGen, but is equally relevant for any situation in which mT2 is used where a side

consists of an “effective” particle composed of two or more real particles.) We note that it

is possible to define a “Truly Transverse” form of mTGen, which we shall denote “mTTGen”

by requiring, before evaluation begins, that each input four-momentum be individually

completely intermixed.
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longitudinally boosted to a frame in which its z-component of momentum is zero. In effect

this throws away each particle’s z-momentum, does not change its transverse momentum,

and reduces its energy so as to keep the particle’s mass invariant. It is equivalent to

evaluating mTGen in a “transverse” Minkowski space with (1+2) dimensions rather than

the usual (1+3) dimensions.

3. Discussion

mT2 has been used in the definition of mTGen, rather than a function of the invariant

masses of the two sides of the event, as it is vital to account for the energy-momentum of

unobserved particles. If an event has a non-zero total transverse momentum, then either

there were unobserved particles in the event, or some momentum was mis-measured (or

lost or created), or indeed a combination of both. mT2 takes these unobserved particles

into account in hadron colliders. However, see the comment in the next section regarding

use in lepton colliders.

3.1 Regarding specialisations

There is room for some slight specialisation of mTGen to the particular problem in hand.

mTGen need not always be calculated in exactly the same way.

For example, if it were desirable to suppose that neither side of an event could decay

entirely into invisible particles, then one might wish to impose the additional constraint

that F contain at least two momenta, and that one should only consider partitions of F

into non-empty subsets. Events with fewer than two momenta in F could either be ignored

or given mTGen values of 0.2

In an alternative specialisation, one could suggest constraining the partitions of F in

such a way as to allow only those which meet certain requirements in terms of conserved

quantum numbers. For example, one might choose to reject assignments which make the

absolute value of the charges on either side of the event greater than 1 or veto events where

the total charge in F is more than some fixed value.3 One might try to restrict on the basis

of lepton number, arguing from the standpoint of lepton universality (though this might

be hard given the possibility of unobserved neutrinos).

Finally, if mTGen were to be used at a lepton collider where the momentum of the

centre of mass was known to a reasonable precision, it would be sensible to replace mT2

(which is a variable designed for hadron colliders and so uses only transverse quantities

2When investigating particular classes of R-parity violating supersymmetric models, an alternative spe-

cialisation might be appropriate. Here it might be desirable to suppose that none of the decay products

on either side of the event could go undetected (be invisible). In this case one might consider evaluating

not mT2 in the definition of mTGen but instead the larger of the two invariant masses of each side of the

event. Note, however, that if this were done, one would have to satisfactorily address the question of where

any observed missing transverse momentum had come from. Under the supposition at work here, large

missing transverse momenta would indicate either large measurement error, or an event incompatible with

the assumptions, and might suggest that the event should be disregarded or recalibrated.
3For example, at the LHC the charge of primary interaction should be −1, 0 or +1.
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in order to be insensitive to longitudinal boosts) with a variable analogous to mT2 but

designed to make use of z-momenta.

3.2 Avoiding over-specialisation

Though one can tailor mTGen to the requirements or assumptions of a particular investiga-

tion, it should be pointed out that the “philosophy” of mTGen is to avoid such specialisation

where unnecessary.

Most events that are actually of the pair-produced type we are concentrating on will

have a large number of partitions. One and only one of those partitions is correct, and it will

produce an mT2 value that is appropriate (i.e. bounded above by the mass of the initially

produced particle). All other (i.e. all wrong) partitions will result in two or more particles

from different “sides” of the event being assigned to the same side. These wrong partitions

thus tend to have have large mT2 values, if only for the reason the union of particles from

opposite sides of the event tends to yield four-momenta with very large invariant masses.

Most wrong partitions therefore lead to mT2 values larger than that generated by the

“correct” partition, and so excluding large numbers of these “bad” partitions often has no

effect on the eventual value of mTGen.

By avoiding complex specialisations, one can make the variable to a large extent insen-

sitive to a detector’s ability (or inability) to distinguish particle types. This can make the

variable useful for example during early running when the detectors’ abilities to determine

particle identification may not be well understood.

3.3 Use as a cut variable

Although mT2 was originally proposed as a variable for measuring particle masses, it can

also be used as a “cut variable” intended to separate certain new-physics signals from

Standard Model backgrounds.4 This success is in part due an accidental conspiracy of

three effects.

(1) mT2 tends to small values for back-to-back QCD-like events;

(2) mT2 tends to small values when the missing transverse momentum is small (which it

is in much of QCD);

(3) mT2 tends to small values when the missing momentum is parallel to one of the

visible particles fed to mT2.

This can easily happen in QCD when there are neutrinos in a jet, or a single jet is mismea-

sured through inadequate containment in a detector or passage through a crack region. By

accident rather than by design, therefore, mT2 tends to shift badly measured and Standard

Model events away from large values, which are where the endpoints of the distributions

containing new physics are expected to be found.

4When used in this way the parameter χ which represents the mass of the stable invisible particle is

typically set to zero. This is of course correct to a very good approximation for the neutrinos which produce

the missing momentum in Standard Model events.
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mTGen shares those features of mT2, as it is always bounded above by mT2 for the cor-

rect partition. mTGen may therefore also be expected to find a role as a “cut variable”, dis-

tinguishing events by their inherent mass scale, and able to focus on better-measured events.

3.4 Comparison with other mass-scale variables: MEff

In the past it has been suggested that a good starting point for the determination of the

mass scale of these new particles is the “effective mass” distribution [6] and [2] section

20.2.1. There are a number of slightly different definitions of MEff and the phrase “mass

scale” (a comprehensive list and comparisons between them may be found in [7]) but a

typical definition of MEff would be

MEff = /pT +
∑

i

pT (i), (3.1)

in which /pT is the magnitude of the event’s missing transverse momentum and where pT (i)

is the magnitude of the transverse momentum of the i-th hardest jet or lepton in the event.

All definitions of MEff are motivated by the fact that new TeV-scale massive particles

are likely to be produced near threshold, and so by attempting to sum up the visible energy

in each event, one can hope to obtain an estimate of the energy required to form the two

such particles. Broadly speaking, the peak in the MEff distribution is regarded as the

mass-scale estimator.

3.4.1 Problems with MEff

Although the effective mass is a useful variable, and simple to compute, it has a few

undesirable properties:

MEff can be sensitive to the beam energy and the proton’s parton distribution functions

(pdfs). This is primarily because the desired correlation between MEff and the mass scale

relies on the assumption that the particles are produced near threshold. While it is true that

the cross sections will usually peak at threshold, they can have significant tails extending

to
√

ŝ values considerably beyond the threshold value. As a result, the MEff distribution

is broad, having a width similar to its mean. This smearing means that it is very hard to

make precise statements about the mass scale from MEff alone. In contrast, the endpoints

of mTGen are “precision measurements” in the sense that, up to the statistical error, the

experimental resolution, and the systematics from mis-assignments between F and G,

the endpoint of an mTGen edge has a direct interpretation as the mass of the underlying

generated particles.

The smearing due to pdfs described above means further that in the upper tails of the

MEff distribution one has little chance of distinguishing the different contributions arising

from distinct pair-production processes. There, the components of the MEff distribution

are expected to blur together. With mTGen it is possible, though not guaranteed, that one

will see multiple edges or changes in gradient in the upper parts of the spectrum allowing

the masses of more than one high mass particle to be determined with precision. The extent

to which this will work in practice is likely to depend on the extent to which the mTGen

distribution is itself smeared by mis-assignments between F and G. Secondary edges at

– 6 –
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lower values of mTGen may, if not obscured by Standard Model backgrounds, also carry

precision information on the masses of lighter particles.

In fairness to MEff , one should point that mTGen has its own weaknesses. Most ob-

viously, it is a number of orders of magnitude more costly5 to compute than MEff , for

what could turn out to be little gain. Secondly, due to its mT2 dependence, mTGen has an

explicit dependence on the hypothesised mass(es) χ of any invisible decay products. This

makes it more complicated to handle, as it is should strictly be termed an event function

(of χ) rather than an event variable. It should be said in defence of mTGen, however, that

it is good that this dependence on χ is explicit and plays a precise role in offsetting the

mTGen endpoints to locations that have a clear physical interpretation. Though the MEff

variable itself is simpler to compute, lacking χ dependence, the need to consider χ cannot

be escaped when using MEff to draw conclusions about mass scales [7]. Thirdly and finally

we note that mTGen, as canonically defined, may be more sensitive to high rapidity ISR

than MEff (see section 3.5). Having said this, the truly transverse form, mTTGen, should

be much more tolerant of ISR while retaining the theoretical properties of mTGen.
6

3.5 Example mTGen distributions

Simulations have been performed for several different supersymmetric particle spectra,

including the Snowmass points [8], for proton-proton collisions at LHC centre-of-mass

energy of
√

s =14TeV. The HERWIG [9 – 11] Monte Carlo generator was used to produce

inclusive unweighted supersymmetric particle pair production events. Final state particles

(other than the invisible neutrinos and neutralinos) were then clustered into jets by the

longitudinally invariant kT clustering algorithm for hadron-hadron collisions [12] used in

the inclusive mode with R = 1.0 [13]. Those resultant jets which had both pseudo-rapidity

(η = − ln tan θ/2) satisfying |η| < 2 and transverse momentum greater than 10 GeV/c were

used to calculate mTGen and MEff .

In figures 1, 2, and 3 we show the distributions which would be obtained for several

different spectra if it were possible to accurately assign all visible momenta to the correct

category F or G (i.e. “interesting final state momenta” versus “initial state radiation”).

The HERWIG initial state radiation and underlying event have been switched off, and the

parameter χ which is required to calculate mTGen has been set to the mass of the lightest

supersymmetric particle. The missing transverse momentum has been calculated from

the negative vector sum of the momenta of the fiducial jets for reasons of computational

efficiency as described in section 3.7.

It can be seen that the upper edge of the distributions gives a very good indication of

the mass of the heaviest pair-produced sparticle. Distributions from a variety of different

supersymmetric points show similar behaviour. This means that the position of the upper

5Though see more positive view of this in section 3.7.
6Despite having mTTGEN ≤ mTGEN on an event-by-event basis, the position of the upper kinematic

endpoint of the mTTGen distribution should be the same as the endpoint for mTGen (although with reduced

statistics at the endpoint) provided that it is kinematically possible for the decay products of each side to

be produced with vanishing relative rapidity.
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Figure 1: On the left hand side is a graphical representation of the susy mass spectrum of

Snowmass point 4. The vertical positions of the particles indicate their masses. The horizontal

positions of the centres of the bars indicate the relative LHC production cross-section (arbitrary

units). The lines joining particles indicate decays with branching fractions in the following ranges:

greater than 10−1 solid; 10−2 → 10−1 dashed; 10−3 → 10−2 dotted. The middle plot shows the

distribution of our variable, mTGen, with mTGen increasing vertically to ease comparison with the

spectrum. The right hand plot shows the distribution of another variable, MEff/2, where MEff is

defined in (3.1). In both the mTGen and the MEff plots, the lighter shading shows the histograms

with the number of events multiplied by a factor of twenty, so that the detail in the upper tail may

be seen.

edge of the mTGen distribution can be used to find out about the mass scale of any semi-

invisibly decaying, heavy, pair-produced particles.

Note that we have deliberately not used any information about the identity of the

observed particles, so we do not know from this plot alone whether the particles produced

were squarks, gluinos, or indeed something completely different. But we do have a very

good indication that there is a particle being pair-produced, and subsequently decaying to

a mixture of visible and invisible particles, and we have a good information about the mass

scale at which this particle (or these particles) may be found.

Furthermore, in all three cases a change in slope can be observed at lower masses due

to significant pair production of lower-mass particles (chargino and/or neutralino pairs for

figure 1 and 3 or stop pairs for figure 2). Therefore it is possible in principle to extract

from this distribution information at several different mass scales.
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Figure 2: As for figure 1, but for Snowmass point 5.

The plots also demonstrate some of the the undesirable properties of the variable MEff .

There is, as has already been shown in [7], some correlation between MEff and the mass

scale of particles being produced. However MEff has a considerable tail at higher values

caused by production of sparticles above threshold.

The effects of Standard Model processes (and selection techniques required to reduce

them) are beyond the scope of this paper. More detailed studies using a complete set of

Standard Model backgrounds and detailed detector simulation will be a important com-

ponent of future work. However we note that most SM events will have a small value of

mTGen for the reasons discussed in section 3.3. Therefore, while these backgrounds might

be expected to make it more difficult to extract information about lighter particles, we

do not expect them to significantly affect the upper edge of the mTGen spectrum which

contains the information about the heavier (here squark and/or gluino) particle masses.

The extent to which the approximations and assumption used in the calculation of

mTGen can be justified is explored in figure 4. If particles from initial state radiation

and the underlying event are allowed to “pollute” the final state (figure 4b) there is some

smearing of the edges.7 The effect of adding the ISR and underlying event is to shift the

apparent position of the mTGen edge up by approximately 15-25% for our point (figure 4b).

This value represents an upper limit to the uncertainty originating from these effects,

7In the previous “unpolluted” plots, the assignment of final state particles to class F or G was determined

from the kinematic history in the Monte Carlo event record.
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Figure 3: As for 1 but for a (non-Snowmass) point with a heavier sparticle spectrum, defined by

the mSUGRA parameters: {m0 = 1200 GeV, m 1

2

= 420 GeV, tanβ = 10, mt = 174 GeV, µ < 0}
and with a spectrum generated using Isajet [14] version 7.58.

which would be obtained in the unlikely case where the corrections from ISR and the

underlying event were completely unknown. The extent to which this effect would be seen

in experimental distributions will depend on the details of the event selection (for example

on the rapidity cut on the jets). We note also that, as anticipated, if the same plots are

generated for the “Truly Transverse” variant of the variable, mTTGen, then the sensitivity

of the endpoint to ISR is reduced (to around 10-15%) and there are proportionally fewer

events at the endpoint. It remains to be seen whether the better strategy for the future will

be to invest time in improving ISR rejection while focusing on mTGen, or to use variants

like mTTGen with less sensitivity to ISR but fewer statistics near the endpoint.

If the invisible particle mass is unknown, or if mTGen is being used as a selection vari-

able, then the distribution with the mass parameter χ = 0 is most appropriate (figure 4c).

In that case the lower limit of the distribution (which cannot drop below χ) is pulled down

toward the origin. The change in the position of the upper edge is much smaller, as one

would expect in the case where the total energy in the final state is dominated by visible

particles.

An efficient method of calculating mTGen which approximates the missing transverse

momentum by the negative vector sum of the jet transverse momenta (see section 3.7) has

been used for all these previous plots. This can be justified by its good agreement with the
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(a) (b) (c) (d)

Figure 4: mTGen distributions for the same spectrum as for figure 3, but with different assump-

tions. (a) The idealised case, as described in text. (b) As for (a) but now with initial state radiation

and the underlying event, and including particles from both categories F and G (“interesting” and

“ISR/underlying event”) to form jets. (c) As for (a) but with the parameter, χ, (corresponding to

the mass of the invisible particle) set to zero. (d) As for (a) but using the sum of the transverse

momenta of the invisible particles for the missing transverse momentum.

corresponding distribution obtained with the full numerical calculation of mTGen using the

“true” missing momentum (figure 4d).

3.6 Cross section constraints

mTGen relies purely on the kinematics of four-momentum conservation in each event. It

makes no use of cross section information, which will therefore always remain a vital tool,

orthogonal to mTGen, with which to constrain the overall mass scale.

3.7 Evaluating mTGen

Historically the main hurdle to the adoption of mTGen has been the cost of evaluating

it.8 For each evaluation, mT2 typically requires a numerical minimisation to be performed

which can take from a few thousandths to a few tenths of a second on most computers.

The definition of mTGen requires this minimisation to be repeated up-to 2(nF ) times: once

8The authors first proposed mTGen for the analysis of the ATLAS Blind Data Challenge which con-

cluded with the prize-giving at the ATLAS overview week in Prague, 2003, reported in New Scientist. See

“Observations concerning the first ATLAS Blind Data Challenge” Barr, A J; Brochu, F M; Lester, C G;

Palmer, M; Sabetfakhri, A; Aug 2003
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for each partition of F . Since typical jet definitions can lead to high jet multiplicities

in supersymmetric events, up to about 20 jets in some parts of parameter space, a naive

implementation can take many seconds, or even hours to calculate mTGen for a single event.

For mTGen to become usable, it is important to find less time-consuming ways in which

the internal mT2 values can be calculated. Ideally, an analytic or closed form expression

for mT2 is required to avoid time-consuming numerical minimisations.

The authors were fortunate to be contacted in November 2006 by Kyoungchul Kong

and Konstantin Matchev (KKKM) [15]. KKKM informed the authors that they had derived

an (undisclosed) analytic expression for mT2 valid for the special case in which the missing

transverse momentum of the event was entirely balanced by the transverse momentum of

the two “key visible particles” input to mT2. In other words, this special case corresponds

to having no net initial state radiation, or in the language of this paper
∣

∣

∣

(

∑(nG)
i=1 gµ

i

)

T

∣

∣

∣
= 0.

It was not until June 2007 that the authors realised that this happens to be an interesting

limit from the point of view of mTGen. If all reconstructed momenta are thrown into F ,

then G is empty by construction, and the special case is satisfied. The more complicated

the event is, the more grounds one has for doing this, as the less sure one can be as to the

provenance of any individual particle.

It is important to confirm the existence of the analytic expression claimed by KKKM

and to perform timing tests using it in order to support the claim that mTGen is now

calculable in a reasonable time. The authors were not able to obtain the full expression

for mT2 from KKKM.9 It has therefore been necessary to re-derive (what is hopefully)

the same result independently in the appendix. The authors understand that KKKM will

release their own result in the near future [16].

Using the analytic form of mT2 derived in the appendix, we find that even with a naive

“try every partition of F” algorithm we can calculate mTGen for a 20-particle event in order

one-second on a typical personal computer.10 The computation time scales as 2N where

N is the number of particles, so a 10-particle event can be processed in one thousandth

of that time. The authors find this is more than fast enough to make mTGen as usable as

other standard event variables.11

4. Conclusion

In conclusion, we believe that mTGen could be an invaluable variable for physicists working

at the LHC, and other future colliders. We hope that if its usefulness is validated in

9Though not releasing the full expression for mT2, KKKM did release the answer for the special-special

case where, in addition to
˛

˛

˛

“

P(nG)
i=1 gµ

i

”

T

˛

˛

˛
= 0 one also has the masses of the two visible particles and the

masses of the two hypothesised invisible particles all equal to zero. Though we did not make use of this

information when deriving our own expression (it cannot be used for mTGen as most partition create event

“sides” which have very large non-zero masses) we are grateful to have been able to use it as a check.
10This implementation is available from the authors on request.
11One would expect that, with more thought, it would be possible to create faster algorithms. Instead of

trying all possible partitions when minimising over mT2 values, it might be possible to design an algorithm

which flips momenta one-at-at-time from one side of the event to the other — hunting for the minimum.

More work would be necessary to determine whether such algorithms could become stuck in local minima.
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subsequent dedicated detector studies, it will become a standard tool in the Swiss army

knife for new physics searches.
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A. Derivation of analytic expression for MT2 valid in limit of no ISR

Here we derive an expression for mT2 for the special case in which the missing transverse

momentum is entirely balanced by the two visible particles’ transverse momentum — i.e.

there must be no ISR. The particles themselves (and the hypothesised missing particles)

are allowed to have arbitrary masses.

Within this appendix we adopt the same conventions and definitions of [5]. In the

language of that paper, the assumptions of our “special case” can be phrased as “Σ = σ”.

We will begin, however, in the general case (Σ 6= σ) and only introduce the simplification

of the special case when we can no longer make progress without it. Beginning with the

general case, then, we have the following notation:

αµ: Lorentz 1+2 momentum of key visible particle 1 (A.1)

βµ: Lorentz 1+2 momentum of key visible particle 2 (A.2)

gµ: Lorentz 1+2 momentum of junk or ISR (A.3)

pµ: Lorentz 1+2 momentum of invisible particle (mass χ) produced with particle 1 (A.4)

qµ: Lorentz 1+2 momentum of invisible particle (mass χ) produced with particle 2 (A.5)

Λµ: Lorentz 1+2 momentum of unit a mass particle which is stationary in the lab frame

(A.6)
√

s: real parameter (the reduced centre-of-mass energy from eq. 18 of [5]) (A.7)

which are related by

αµ + βµ + gµ + pµ + qµ =
√

sΛµ. (A.8)

Note that there is a potential ambiguity here between real momenta, measured momenta,

and hypothesised momenta. In this document, the quantities which are directly visible (αµ,
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βµ and gµ) are taken to be be real momenta, or equivalently to be measured quantities

with zero measurement error. Conversely pµ, qµ and
√

s are quantities which cannot be

measured. In this case these symbols refer to the hypothesised neutralino momenta and/or

hypothesised centre of mass energies that are used throughout the process of describing the

event while attempting to calculate mT2.

For simplicity, some derived quantities are also defined:

σµ = αµ + βµ: Lorentz 1+2 momentum sum of the two key visible particles (A.9)

∆µ = αµ − βµ: Lorentz 1+2 momentum difference of the two key visible particles

(A.10)

Σµ = σµ + gµ: Lorentz 1+2 momentum sum of everything seen in the detector (A.11)

Bµ = pµ + qµ: Lorentz 1+2 momentum sum of the two invisible particles. (A.12)

We already know that the particular momenta of p and q which need to be hypoth-

esised to generate the value of mT2 fall into one of two categories. Either they are in a

“balanced” configuration in which (α + p)2 = (β + q)2 or the value of mT2 is achieved for

an “unbalanced” configuration in which this is not true. It is easy to determine whether a

given set of momenta {αµ, βµ, gµ} generate mT2 from a balanced or an unbalanced config-

uration, and also easy to determine what mT2 is for the unbalanced cases. We concentrate

first, therefore, on the harder case of how to calculate the value of mT2 if it has already

been determined that it occurs in a “balanced” configuration.

A.1 Balanced configurations

In the “balanced configuration”, the value of mT2 will be the minimum value of (α + p)2

over all allowed values of
√

s provided that the following constraints are satisfied:

p2 = χ2 (A.13)

q2 = χ2 (A.14)

(α + p)2 = (β + q)2. (A.15)

The first two constraints just put pµ and qµ on mass shell. The final constraint is the one

that makes the configuration mass balanced. When the constraint of equation (A.15) is

satisfied we will refer to the both (α + p)2 and (β + q)2 as M2. The approach we will take

will be to assume a fixed value of
√

s and then solve the above three equations for pµ and

qµ. We then explicitly minimise the resulting value of M by varying
√

s. The resulting

minimum value of M is the value of mT2 we seek.

From equation (A.8) we can see that for fixed
√

s, the value of Bµ is fully determined:

Bµ =
√

sΛµ − Σµ (A.16)

and so the sum pµ + qµ is fixed. We therefore choose to parametrise the three degrees of

freedom which pµ and qµ have collectively by writing them in terms of an unknown Lorentz
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1+2 vector γµ as follows:

pµ =
1

2
Bµ + γµ (A.17)

qµ =
1

2
Bµ − γµ. (A.18)

Our stated intention of determining pµ and qµ for fixed
√

s is therefore really a re-

quirement to determine the three components of γµ, from the three constraints in equa-

tions (A.13), (A.14) and (A.15). By substituting the two equations above into equa-

tions (A.13), (A.14) and (A.15) it is easy to show that the constraints on γµ are equivalent

to the following:

γ.B = 0 (A.19)

γ.σ = −1

2
∆.(B + σ) (A.20)

γ2 = −1

4
(B2 − 4χ2). (A.21)

The form of the above constraints motivates solving for γµ as a linear combination of the

three linearly independent vectors Bµ, σµ and wµ = ǫµντσνBτ . Doing this, one finds two

possible solutions:

γµ = Hµ ± ŵµ

√

H2 +
1

4
(B2 − 4χ2) (A.22)

where

ŵµ =
wµ

√
−w2

(A.23)

and

Hµ =
−1

2∆.(B + σ)

w2

[(

B2
)

σµ − (σ.B)Bµ
]

. (A.24)

Each solution corresponds to a kinematic configuration which is a valid realisation of orig-

inal mass constraints, but the value of M will almost certainly be different in each case.

Since our intention is to find mT2, we will eventually want to retain only the solution which

gives the smaller value of M . As we do not yet know which solution that is, we retain both

for the moment.

We have now accomplished what we set out to achieve in step one. For fixed
√

s

we have defined Bµ (with equation (A.16)). This value may be substituted into equa-

tions (A.22), (A.23) and (A.24) in order to find γµ. In terms of γµ we can then find the

values of pµ and qµ (via equations (A.17) and (A.18)) which lead to the so called “bal-

anced” kinematic structure in which both sides of the event have equal invariant mass M .

All that now remains to do, is to minimise the value of M so-obtained over all allowed

values of
√

s.

It is at this stage that we now move the “No ISR” special case that may be summarised

as Σµ = σµ or equivalently as gµ = 0. This change only affects terms with Bµ’s in them
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as these are the only quantities containing Σµ. Having made the substitution Σµ → σµ

there is a substantial amount of cancellation within the expressions in terms of which γµ

is defined (equation (A.22)). The net effect of this cancellation leaves M ’s dependence on√
s in the relatively simple form:

M2 = E + A
√

s ± λ

√

(√
s − D

)2 − C2 (A.25)

for suitable values of the real quantities A, C, D, E and λ which do not depend on
√

s.

It is straightforward to show that the minimum of this function occurs when
√

s takes the

value:12

√
s = D +

C
√

1 − λ2

A2

(A.26)

All that is needed to complete the evaluation of mT2 in this special case, then, is to deter-

mine the quantities A, C, D, and λ. (E is not needed to calculate the value of
√

s which

minimises M2.) We can then evaluate
√

s in terms of these quantities, allowing in turn

Bµ, wµ, Hµ, γµ, pµ and finally mT2 to be calculated. It may be shown that the values

needed are as follows:

A =
1

2
(Λ.σ) +

1

2

(Λ.∆)

|σ|2 [(σ.∆) − (Λ.σ)(Λ.∆)] , (A.27)

C =

√

|σ|2 +
χ2

J
, (A.28)

D = Λ.σ (A.29)

and (A.30)

λ =
ǫµντ∆µσνΛτ

√
J

|σ| (A.31)

where (A.32)

J =
|σ|2 − (Λ.∆)2

4|σ|2 (A.33)

and the quantity |σ|2 is always evaluated in the lab frame.13 Note that the condition

expressed in equation (A.15) means that we can use a number of different expressions to

finally evaluate mT2. The simplest would be m2
T2 = (α + p)2 or m2

T2 = (β + q)2. However

it is arguably nicer to preserve the explicit symmetry between the two sides of the event

by instead evaluating m2
T2 as the average of these two identical quantities. If this is done,

one ends up with

m2
T2 =

1

2
(α + p)2 +

1

2
(β + q)2 (A.34)

= χ2 +
1

2
(m2

α + m2
β) +

1

2
(σ.B) + (∆.γ). (A.35)

Note that it was the last of these forms which was used to generate the statement of

equation (A.25).

12There is also a stationary point at
√

s = D − C/
q

1 − λ2

A2 but it can be shown that this is always

unphysical.
13In other words |σ|2 = (σ.Λ)2 − σ2.
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A.2 Unbalanced solutions

As discussed in [5], the value of mT2 does not always arise from a configuration of hy-

pothesised momenta in which both sides of the event have the same invariant mass. These

unbalanced solutions arise if the momentum splitting which places one of the hypothesised

neutralinos at the same transverse velocity, vt = pT /ET , as its visible “partner” (thereby

minimising the invariant mass of that side of the event) causes the invariant mass of the

other side of the event (which is then fixed by momentum conservation) to be even lower.

This statement is generally true, and does not require the move to the Σ = σ special case

considered in the section dealing with “balanced” solutions. Nevertheless, in order to write

the full expression for the Σ = σ case we need to take these possibilities into account.

A.3 Putting all cases together

We can now combine the two previous results into the following complete expression for mT2

valid for events in which the missing transverse momentum exactly balances the transverse

momentum of the two important visible particles (i.e. valid for the case Σ = σ also known

as “no ISR”).

m2
T2 =



































(mα + χ)2 iff (mα + χ)2 ≥ (β + q̃)2,

(mβ + χ)2 iff (mβ + χ)2 ≥ (α + p̃)2,

(α + p)2 or equivalently

(β + q)2 or equivalently

χ2 + 1
2 (m2

α + m2
β) + 1

2(σ.B) + (∆.γ) otherwise

(A.36)

where q̃µ =
(√

χ2 + |q̃|2, q̃
)

with q̃ = −Σ − χ
mα

α and p̃µ =
(√

χ2 + |p̃|2, p̃
)

with p̃ =

−Σ− χ
mβ

β and in which pµ and qµ (which must not be confused with the entirely different

quantities p̃µ and q̃µ just mentioned!) are defined by

pµ =
1

2
Bµ + γµ, (A.37)

qµ =
1

2
Bµ − γµ, (A.38)

γµ = Hµ ± ŵµ

√

H2 +
1

4
(B2 − 4χ2) (A.39)

(choosing the sign which leads to the smaller value of mT2) in which

ŵµ =
wµ

√
−w2

(A.40)

with

wµ = ǫµντσνBτ (A.41)

and

Hµ =
−1

2∆.(B + σ)

w2

[

(B2)σµ − (σ.B)Bµ
]

. (A.42)
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and where we have taken in the “no ISR no junk” case

Bµ =
√

sΛµ − σµ (A.43)

having set

√
s = D +

C
√

1 − λ2

A2

(A.44)

where

A =
1

2
(Λ.σ) +

1

2

(Λ.∆)

|σ|2 [(σ.∆) − (Λ.σ)(Λ.∆)] , (A.45)

C =

√

|σ|2 +
χ2

J
, (A.46)

D = Λ.σ and (A.47)

λ =
ǫµντ∆µσνΛτ

√
J

|σ| (A.48)

in which

J =
|σ|2 − (Λ.∆)2

4|σ|2 (A.49)

and where the quantity |σ| =
√

(σ.Λ)2 − σ2 is the magnitude of the visible transverse

momentum evaluated in the lab frame.
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